Image for Uncertain Schema Matching

Uncertain Schema Matching

Part of the Synthesis Lectures on Data Management series
See all formats and editions

Schema matching is the task of providing correspondences between concepts describing the meaning of data in various heterogeneous, distributed data sources.

Schema matching is one of the basic operations required by the process of data and schema integration, and thus has a great effect on its outcomes, whether these involve targeted content delivery, view integration, database integration, query rewriting over heterogeneous sources, duplicate data elimination, or automatic streamlining of workflow activities that involve heterogeneous data sources.

Although schema matching research has been ongoing for over 25 years, more recently a realization has emerged that schema matchers are inherently uncertain.

Since 2003, work on the uncertainty in schema matching has picked up, along with research on uncertainty in other areas of data management.

This lecture presents various aspects of uncertainty in schema matching within a single unified framework.

We introduce basic formulations of uncertainty and provide several alternative representations of schema matching uncertainty.

Then, we cover two common methods that have been proposed to deal with uncertainty in schema matching, namely ensembles, and top-K matchings, and analyze them in this context.

We conclude with a set of real-world applications. Table of Contents: Introduction / Models of Uncertainty / Modeling Uncertain Schema Matching / Schema Matcher Ensembles / Top-K Schema Matchings / Applications / Conclusions and Future Work

Read More
Special order line: only available to educational & business accounts. Sign In
£22.49 Save 10.00%
RRP £24.99
Product Details
3031007174 / 9783031007170
Paperback / softback
005.74
01/03/2011
Switzerland
85 pages, XII, 85 p.
191 x 235 mm