Image for Model and Design of Improved Current Mode Logic Gates : Differential and Single-ended

Model and Design of Improved Current Mode Logic Gates : Differential and Single-ended (1st ed. 2020)

See all formats and editions

This book presents MOSFET-based current mode logic (CML) topologies, which increase the speed, and lower the transistor count, supply voltage and power consumption.

The improved topologies modify the conventional PDN, load, and the current source sections of the basic CML gates. Electronic system implementation involves embedding digital and analog circuits on a single die shifting towards mixed-mode circuit design.

The high-resolution, low-power and low-voltage analog circuits are combined with high-frequency complex digital circuits, and the conventional static CMOS logic generates large current spikes during the switching (also referred to as digital switching noise), which degrade the resolution of the sensitive analog circuits via supply line and substrate coupling.

This problem is exacerbated further with scaling down of CMOS technology due to higher integration levels and operating frequencies.

In the literature, several methods are described to reduce the propagation of the digital switching noise.

However, in high-resolution applications, these methods are not sufficient.

The conventional CMOS static logic is no longer an effective solution, and therefore an alternative with reduced current spikes or that draws a constant supply current must be selected.

The current mode logic (CML) topology, with its unique property of requiring constant supply current, is a promising alternative to the conventional CMOS static logic.

Read More
Special order line: only available to educational & business accounts. Sign In
£80.99 Save 10.00%
RRP £89.99
Product Details
Springer Verlag, Singapore
9811509840 / 9789811509841
Paperback / softback
004.6
02/12/2020
Singapore
171 pages, 2 Illustrations, color; 98 Illustrations, black and white; XIV, 171 p. 100 illus., 2 illu
155 x 235 mm, 454 grams
Professional & Vocational Learn More