Image for Active Learning to Minimize the Possible Risk of Future Epidemics

Active Learning to Minimize the Possible Risk of Future Epidemics

Part of the Springerbriefs in Applied Sciences and Technology series
See all formats and editions

Future epidemics are inevitable, and it takes months and even years to collect fully annotated data.

The sheer magnitude of data required for machine learning algorithms, spanning both shallow and deep structures, raises a fundamental question: how big data is big enough to effectively tackle future epidemics?

In this context, active learning, often referred to as human or expert-in-the-loop learning, becomes imperative, enabling machines to commence learning from day one with minimal labeled data.

In unsupervised learning, the focus shifts toward constructing advanced machine learning models like deep structured networks that autonomously learn over time, with human or expert intervention only when errors occur and for limited data-a process we term mentoring.

In the context of Covid-19, this book explores the use of deep features to classify data into two clusters (0/1: Covid-19/non-Covid-19) across three distinct datasets: cough sound, Computed Tomography (CT) scan, and chest x-ray (CXR).

Not to be confused, our primary objective is to provide a strong assertion on how active learning could potentially be used to predict disease from any upcoming epidemics.

Upon request (education/training purpose), GitHub source codes are provided.

Read More
Special order line: only available to educational & business accounts. Sign In
£39.99
Product Details
Springer
9819974429 / 9789819974429
eBook (EPUB)
22/11/2023
Singapore
96 pages
Copy: 10%; print: 10%