Image for Spectroscopy and computation of hydrogen-bonded systems

Spectroscopy and computation of hydrogen-bonded systems

jcik, Marek J. W(Edited by)Ozaki, Yukihiro(Edited by)
See all formats and editions

Spectroscopy and Computation of Hydrogen-Bonded Systems

Comprehensive spectroscopic view of the state-of the-art in theoretical and experimental hydrogen bonding research

Spectroscopy and Computation of Hydrogen-Bonded Systems includes diverse research efforts spanning the frontiers of hydrogen bonding as revealed through state-of-the-art spectroscopic and computational methods, covering a broad range of experimental and theoretical methodologies used to investigate and understand hydrogen bonding. The work explores the key quantitative relationships between fundamental vibrational frequencies and hydrogen-bond length/strength and provides an extensive reference for the advancement of scientific knowledge on hydrogen-bonded systems.

Theoretical models of vibrational landscapes in hydrogen-bonded systems, as well as kindred studies designed to interpret intricate spectral features in gaseous complexes, liquids, crystals, ices, polymers, and nanocomposites, serve to elucidate the provenance of spectroscopic findings. Results of experimental and theoretical studies on multidimensional proton transfer are also presented.

Edited by two highly qualified researchers in the field, sample topics covered in Spectroscopy and Computation of Hydrogen-Bonded Systems include:

  • Quantum-mechanical treatments of tunneling-mediated pathways and molecular-dynamics simulations of structure and dynamics in hydrogen-bonded systems
  • Mechanisms of multiple proton-transfer pathways in hydrogen-bonded clusters and modern spectroscopic tools with synergistic quantum-chemical analyses
  • Mechanistic investigations of deuterium kinetic isotope effects, ab initio path integral methods, and molecular-dynamics simulations
  • Key relationships that exist between fundamental vibrational frequencies and hydrogen-bond length/strength
  • Analogous spectroscopic and semi-empirical computational techniques examining larger hydrogen-bonded systems

Reflecting the polymorphic nature of hydrogen bonding and bringing together the latest experimental and computational work in the field, Spectroscopy and Computation of Hydrogen-Bonded Systems is an essential resource for chemists and other scientists involved in projects or research that intersects with the topics covered within.

Read More
Special order line: only available to educational & business accounts. Sign In
£150.00
Product Details
Wiley-VCH
3527834907 / 9783527834907
eBook (EPUB)
541.22
13/12/2022
English
1 pages
Copy: 40%; print: 40%